The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex.
نویسندگان
چکیده
Interneurons in layer 2/3 (L2/3) of the somatosensory cortex show 4 types of axonal projection patterns with reference to the laminae and borders of columns in rat barrel cortex (Helmstaedter et al. 2008a). Here, we analyzed the dendritic geometry and electrical excitability of these interneurons. First, dendritic polarity, measured based on the insertion points of primary dendrites on the soma surface, yielded a continuous one-dimensional measure without a clustering of dendritic polarity types. Secondly, we analyzed polar and vertical distributions of dendritic length. A cluster analysis allowed the definition of 7 types of dendritic arborization. Thirdly, when dendritic polarity was related to the intrinsic electrical excitability we found that the ratio of frequency adaptation in trains of action potentials (APs) evoked by current injection was correlated with the number of primary dendrites. Numerical simulations of spiking patterns in L2/3 interneurons suggested that the number of primary dendrites could account for up to 50% of this correlation. Fourthly, dendritic arborization was not correlated with axonal projection, and axonal projection types could not be predicted by electrical excitability parameters. We conclude that 1) dendritic polarity is correlated to intrinsic electrical excitability, and 2) the axonal projection pattern represents an independent classifier of interneurons.
منابع مشابه
L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability.
For a detailed description of the circuitry of cortical columns at the level of single neurons, it is essential to define the identities of the cell types that constitute these columns. For interneurons (INs), we described 4 "types of axonal projection patterns" in layer 2/3 (L2/3) with reference to the outlines of a cortical column (Helmstaedter et al. 2008a). In addition we quantified the den...
متن کاملMultiparameter Analysis of Axonal Projection, Dendritic Geometry, and Electrical Excitability
For a detailed description of the circuitry of cortical columns at the level of single neurons, it is essential to define the identities of the cell types that constitute these columns. For interneurons (INs), we described 4 ‘‘types of axonal projection patterns’’ in layer 2/3 (L2/3) with reference to the outlines of a cortical column (Helmstaedter et al. 2008a). In addition we quantified the d...
متن کاملNeuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns.
In the neocortex, inhibition by gamma-aminobutyric acidergic (GABAergic) interneurons is essential for shaping cortical maps, which represent sensory signals. For a detailed understanding of the stream of excitation evoked, for example, by a sensory stimulus, interneurons must be identified with reference to their impact on excitatory neurons located in different laminae of the same (home) and ...
متن کاملCanonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits.
Interneurons play a key role in cortical function and dysfunction, yet organization of cortical interneuronal circuitry remains poorly understood. Cortical Layer 1 (L1) contains 2 general GABAergic interneuron groups, namely single bouquet cells (SBCs) and elongated neurogliaform cells (ENGCs). SBCs predominantly make unidirectional inhibitory connections (SBC→) with L2/3 interneurons, whereas ...
متن کاملSubcolumnar dendritic and axonal organization of spiny stellate and star pyramid neurons within a barrel in rat somatosensory cortex.
Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully mea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 19 4 شماره
صفحات -
تاریخ انتشار 2009